Rule Extraction from Neural Network by Genetic Algorithm with Pareto Optimization
نویسندگان
چکیده
The method of rule extraction from a neural network based on the genetic approach with Pareto optimization is presented in the paper. The idea of Pareto optimization is shortly described and the details of developed method such as fitness function, genetic operators and the structure of chromosome are shown. The method was tested with well known benchmark data sets. The results of these experiments are presented and discussed.
منابع مشابه
GA-Based Rule Extraction from Neural Networks for Approximation
neural networks solving approximation problem. It is based on two hierarchical evolutionary algorithms with multiobjective Pareto optimisation. The lower level algorithm searches for rules that are optimised by the upper level algorithm. The conclusion of the rule takes the form of a tree whose inner nodes contain functions and operators, and leaves—identifiers of attributes and numeric constan...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملMulti-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm
One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...
متن کاملOptimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm
Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...
متن کاملPareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کامل